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Abstract

We propose a novel one-stage Transformer-based se-
mantic and spatial refined transformer (SSRT) to solve the
Human-Object Interaction detection task, which requires
to localize humans and objects, and predicts their interac-
tions. Differently from previous Transformer-based HOI ap-
proaches, which mostly focus at improving the design of the
decoder outputs for the final detection, SSRT introduces two
new modules to help select the most relevant object-action
pairs within an image and refine the queries’ representation
using rich semantic and spatial features. These enhance-
ments lead to state-of-the-art results on the two most popu-
lar HOI benchmarks: V-COCO and HICO-DET.

1. Introduction

Human-object interaction (HOI) detection is an im-
portant building block for complex visual reasoning,
such as scene understanding [11, 51] and action recog-
nition [50, 55], and its goal is to detect all HOI triplets
⟨human, object, action⟩ in each image. Fig. 1 shows an
example of a HOI detection, where the person (i.e., the hu-
man) is denoted with a red bounding box, the sports ball
(i.e., the object) with a yellow bounding box, and the action
kick is what that human is performing with that object.

The HOI literature can be divided into two-stage and one
stage approaches. Two-stage approaches [12–14, 18, 19, 27,
30,31,33,34,39,43,46–48,53,54,56] first use off-the-shelf
detectors to localize all instances of people and objects in-
dependently. For each person and object bounding box pair,
an interaction class is then predicted in the second stage.
This sequential process has two main drawbacks [7,25,26]:
(1) off-the-shelf object detectors are agnostic to the concept
of interactions; and (2) enumerating over all pairs of person
and object bounding boxes to predict an interaction class
is time-consuming and expensive. In contrast, one-stage
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Figure 1. Conceptual workflow of SSRT. Instead of just feeding the
encoded image to the decoder, we pre-select object-action (OA)
prediction candidates and encode them to semantic and spatial
features. These features then refine the learnt queries in decoding
to enable them to attend to more relevant HOI predictions.

approaches detect all the components of an HOI triplet di-
rectly in an end-to-end fashion. Some earlier one-stage ap-
proaches used intermediate representations based on inter-
action points [32,49] and union boxes [25] to predict these.
However, such methods fail when the interacting human
and object are far away from each other and when multi-
ple interactions overlap (e.g., crowd scenes) [7, 42].

More recently, a new trend of one-stage approaches [7,
26, 42, 58] based on Transformer architectures [5, 10, 35]
have been proposed to overcome these problems and im-
prove the HOI detection performance. This paper belongs
to this category of works (Fig. 1). At a high-level, these ap-
proaches first use a CNN backbone to extract image features
and then feed them into an encoder-decoder architecture.
Some approaches use two decoders to detect instances and
interactions in parallel [7, 26]. while others follow a sim-
pler design that directly predicts all the elements of an HOI
triplet with a single decoder [42,58]. While successful, this
design suffers from two limitations: (i) not all object-action
pairs are meaningful (e.g., a person cannot be ‘cutting a
pizza’ when the pizza is far away from the person’s loca-
tion; and it is unusual for a person to be ‘cutting a football’),
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simply relying on the one-shot network to reduce them may
not be effective; and (ii) each simple query is decoded for
all the rich elements of an HOI triplet (i.e., person location,
object class and location, and interaction class), which is
challenging, especially considering how HOI detection re-
quires reasoning about complex relational structures in im-
ages. We address both of these limitations in our work.

For this, we propose Semantic and Spatial Refined
Transformer (SSRT), that solves the aforementioned limita-
tions by predicting what subset of object-action pairs is rel-
evant for an image, and using explicit semantic and spatial
information to support and guide the queries, so that they
can be decoded more reliably and are more aligned with the
final detection. In details, SSRT improves the Transformer
design of previous HOI detector by introducing two novel
modules: a Support Feature Generator (SFG) and a Query
Refiner (QR) (Fig. 2). The former generates semantic and
spatial features from a set of pre-selected object-action (OA)
pairs, while the latter integrates these features for decoding.

Our approach achieves state-of-the-art results on both V-
COCO [16] and HICO-DET [6] datasets, showing the im-
portance and effectiveness of our semantic and spatial guid-
ance for HOI detection. Finally, in an extensive ablation
study, we also evaluate our model design and our parameter
choices, to further highlight the SSRT’s contributions.

2. Related Work
Two stage HOI detection networks detect objects and

then detect HOIs among those detected objects. These net-
works rely on an off-the-shelf object detector [41] to local-
ize objects. For detecting interactions among the detected
objects these networks develop different novel techniques.
Few works [13,34] consider humans and objects as nodes in
graph networks. Another line of works [43, 46] utilize spa-
tial and pose features to attend salient spatial regions of the
images. Additionally, other works are using object affor-
dance based architectures [20, 21] to deal with the long-tail
distribution problem of the HOI detection datasets. More-
over, there are works [19, 30] that leverage the composi-
tional nature of objects and interactions to detect HOIs. An-
other paradigm of two stage works utilize additional fea-
tures like 3D representation of humans [29], semantic con-
texts [22, 34], segmentation masks [33]. However, perfor-
mance of these networks are highly dependent on the qual-
ity of the object detection. Moreover, these networks suf-
fer heavily to process the overwhelming number of non-
interacting detected objects [57].

To deal with the issues faced by two stage networks, re-
cent works [7, 9, 26, 42, 57, 58] are trying to detect HOIs
in a one stage framework. These networks take images as
input and directly detect and localize HOIs over those im-
ages. Initial one stage HOI detection networks [32, 49] fo-
cus on detecting pre-defined interaction points to detect in-

teractions. However, these heuristic based approaches often
fail to find spatial contextual information. For getting richer
contextual features many recent one stage HOI detection
networks [7,26,42,58] adapt encoder-decoder based Trans-
former [45] like architecture inspired from the one stage ob-
ject detection network DETR [5].

However, these networks do not consider the additional
complexity of doing two related but different subtasks of
object localization and interaction detection. The base net-
work of these mentioned works is essentially an object de-
tector network which is expanded for interaction detection.
Therefore, it is beneficial to provide additional guidance to
these networks. Moreover, these one stage networks do not
leverage spatial and semantic cues that are proven to be ben-
eficial to detect HOIs in few two-stage works [22, 44, 52].
In this respect, we propose a semantic and spatially refined
transformer based architecture to detect HOIs in one single
stage. Our superior numerical results over these state of the
art methods prove our method’s effectiveness.

3. Technical Approach
Most of today’s Transformer-based HOI detection net-

works [7, 26, 42, 58] follow the DETR [5] architecture and
focus on improving the design of the decoder outputs for
the HOI task. Instead, our SSRT approach improves the
overall design of the Transformer. Specifically, it adds two
new modules between the encoder and the decoder: a Sup-
port Feature Generator (SFG) (Sec. 3.2) and a Query Re-
finer (QR) (Sec. 3.3) (Fig. 2). At a high level, SSRT works
as follows: given an input image, it first extracts its fea-
tures with a CNN backbone and then transform those using
a transformer encoder. Instead of feeding the encoded fea-
tures directly into the decoder, the features are sent to SFG
to first generate a set of object-action (OA) prediction can-
didates (without localization). Then the SFG generates both
spatial and semantic features using these candidates and ag-
gregates them as support features. These support features
are then sent to the QR to refine the learnable queries. Fi-
nally, the HOI Decoder takes the inputs as both the encoded
features and the refined queries, and outputs a set of embed-
dings, each of which is used to predict an HOI output.

3.1. Our Architecture

Given an input image x ∈ RH0×W0×C0 , where
H0,W0, C0 denote the image height, width and color chan-
nels, SSRT first extracts a feature map RH×W×C using a
CNN backbone (F) (e.g. ResNet-50 [17]). F(x) is then sent
to a 1x1 convolution to reduce the channel dimension C to
a smaller value d, and obtain Fc(x) ∈ RH×W×d. Follow-
ing previous works [7, 26, 42, 58], we add a fixed positional
encoding p ∈ RH×W×d to the input feature of the encoder
to supplement the positional information. The encoder fol-
lows the standard architecture of the transformer as a stack
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Figure 2. Overview of our SSRT network. Given an image, we extract features using a backbone and feed them to Transformer Encoder. The
encoder’s output is then sent to the Support Feature Generator (SFG), which first predicts and selects top-K object-action (OA) candidates,
and then generates spatial and semantic features. Next, the aggregated features are sent to the Query Refiner (QR) to refine queries.
Finally, The refined queries are decoded: each query is used to predict a human bounding box, an object bounding box, an interaction
vector and an object class vector via interaction heads with small FFNs.

of multi-head self-attention modules and a feed forward net-
work (FFN). The encoded feature map Fe(x) ∈ RH×W×d

is obtained as follows:

Fe(x) = Encoder(Fc(x),p) (1)

Instead of feeding Fe(x) only to the HOI decoder, we
also send it to our SFG module. Here, we first predict K
pairs of (object, action) categories (i.e., OA pairs) present
in the image and select a subset from them. We then use
spatial and semantic cues for the OA prediction candidates
to generate support features, fsupp(x). The details of the
SFG module are discussed in Sec. 3.2. The support fea-
tures, fsupp(x) along with an initial set of queries, Q =

{qi|qi ∈ Rd}Nq

i=1 are fed into the QR module. The query
refiner module is a decoder like architecture which outputs
a refined set of queries, Qr(x) = {qr

i (x)|qr
i (x) ∈ Rd}Nq

i=1,
i.e.,

Qr(x) = QR(fsupp(x),Q) (2)

The details of the QR block are discussed in Sec. 3.3. Both
the encoder output Fe(x) and the refined queries Qr(x)
are sent to the HOI decoder for the final decoding. Note
that in contrast to the standard transformer architectures, the
queries which are fed into the decoder are a function of the
input image x. The goal of modeling it in this manner is
to explicitly provide more guidance to the decoder so that
it can generate more accurate HOI outputs. The HOI de-
coder follows the standard architecture of the transformer
as a stack of multi-headed cross-attention units but no self-
attention layers. The refined queries Qr(x) are transformed
into a set of output embeddings, K(x) = {ki(x)|ki(x) ∈
Rd}Nq

i=1, i.e.,:

K(x) = Decoder(Fe(x),p,Q
r(x)) (3)

where p is the positional embedding. Each query is de-
signed to capture at most one HOI prediction. We feed these

Figure 3. Our Support Feature Generator (SFG) design.

queries to four small Feed Forward Network (FFNs) to pre-
dict human bounding boxes bh(x) ∈ [0, 1]4, object bound-
ing boxes bo(x) ∈ [0, 1]4, interaction prediction vectors
PHOI(x) ∈ [0, 1]Nact , and object class prediction vectors
Pobj(x) ∈ [0, 1]Nobj , where Nact and Nobj are the num-
ber of interaction classes and number of object classes. bo,
bh and PHOI are predicted with sigmoid functions, Pobj is
predicted with softmax function. Like [42], we weigh our
final interaction prediction vectors with the most confident
object class predictions as:

PHOI(x) = PHOI(x) ∗max(Pobj(x)) (4)

We discuss details on how to train this network in Sec. 3.4.

3.2. Support Feature Generator

The goal of SFG is to provide support to the transformer
with additional semantic and spatial cues, as they play sig-
nificant roles towards detecting all the rich HOI outputs.
Specifically, semantic cues are important to help capture the
human-object relations [52] while spatial cues are important
to help accurately localize the humans and objects [43].

While explicitly using these cues have been proved suc-
cessful in the two-stage solutions [43,52], it has not been ex-
ploited in one-stage approaches. In this block, we propose
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how to generate support features fsupp(x) for an image,
which can then be used as inputs to the query refiner block
and subsequently to the decoder. We first select K high
confident object-action (OA) candidates predicted from the
encoder feature, Fe(x), and enrich them with semantic and
spatial embeddings to generate the support features (Fig. 3).

OA Candidates Sampler. As shown in Fig. 3, we build a
3-layer FFN gcls on top of the average-pooled encoded fea-
tures Fe(x) to predict the object-action (OA) candidates,
i.e., s(x) = σ(gcls(avg-pool(Fe(x)))), where s(x) ∈
[0, 1]Ns , Ns is the number of possible set of object-action
(OA) pairs and σ is the sigmoid function. Note how in
this module, s(x) corresponds to the OA labels without
localization. Among all predictions, we then select the
top-K (object, action) candidates with the highest confi-
dence. Let this set of selected candidates be represented
by Scand = {(yo,i, ya,i)}Ki=1.

Semantic Feature Generator. Recently, language-image
models [23,40] have shown strong capabilities in generating
high quality representations that can capture rich seman-
tic and context information. We believe such embedding
should be able to capture the relational structure and enrich
the context of the transformer network. Therefore, we use a
CLIP [40] text encoder to compute the semantic representa-
tion of each pre-selected OA candidate. Since CLIP works
best with sentences (as opposed to single words), we con-
vert each predicted OA into a full sentence before feeding
it to the CLIP text encoder. For example, we transform the
pair (phone, talk) into the sentence “A person is talking
on the phone”. The transformation is done automatically
following certain pre-defined rules using scripts with tiny
manual efforts. Finally we project these semantic features
to the image feature space by using a linear projection layer
(Fig. 3, top). For each OA candidate, (yo,i, ya,i) ∈ Scand,
we compute the semantic feature as follows:

fsem(yo,i, ya,i) = Embsem(yo,i, ya,i) (5)

where, Embsem is the semantic embedding function.

Spatial Feature Generator. In two-stage HOI ap-
proaches, the spatial features are generated based on pre-
dicted human and object bounding boxes from off-the-shelf
detectors [14, 43]. As these are not available for one-state
approaches like ours, we propose to estimate bounding box
locations using training data statistics.

We define the relative spatial configuration (RSC) as the
object bounding box location with respect to the human
bounding box location, and estimate the RSC from the train-
ing data. Specifically, given a human h and an object o,
we denote the human bounding box as (xh, yh, wh, hh) and
object bounding box as (xo, yo, wo, ho), where (x, y) is the
top left point and (w, h) is width and height of the bound-
ing box. Inspired by previous work [15], we define the RSC

as (∆xoh,∆yoh,∆woh,∆hoh), where: ∆xoh = xo−xh

wh
,

∆yoh = yo−yh

hh
, ∆woh = log wo

wh
, and ∆hoh = log ho

hh
.

We then consider for each interaction, ∆xoh,∆yoh follow
a bi-variate Gaussian distribution and ∆woh,∆hoh follow
another bi-variate Gaussian distribution. We estimate es-
sential parameters (mean, co-variance) for these variables
using all the training samples for each OA label. We esti-
mate the person bounding boxes in the similar way.

Using these distributions, we then generate random sam-
ples as the human and object bounding boxes to create the
spatial features. As shown in Fig. 3 we follow previous
works [43] to generate the spatial map for each OA label.
The spatial map is a 2 × B × B size binary map where
in the first channel the location of the human bounding
box is 1 and in the second channel the location of the ob-
ject bounding box is 1. The rest of the locations in spatial
map are zero. Finally we pass through this spatial map to
2 convolution layers followed by a linear projection layer
to generate the spatial feature. For each OA candidate,
(yo,i, ya,i) ∈ Scand, we compute the spatial features:

fspa(yo,i, ya,i) = Embspa(yo,i, ya,i) (6)
Embspa is the embedding function for the spatial features.
Feature Aggregation. For each pre-selected OA can-
didate, (yo,i, ya,i) ∈ Scand, we have the semantic fea-
ture, fsem(yo,i, ya,i) and the spatial feature, fspa(yo,i, ya,i).
These features are aggregated as follows:

fagr(yo,i, ya,i) = gagr(fsem(yo,i, ya,i), fspa(yo,i, ya,i))
(7)

where gagr is the aggregation function. We concatenate the
features, fagr(yo,i, ya,i) extracted for all candidates ∈ Scand
and form the support feature, fsupp(x) ∈ RK×d.

3.3. Query Refiner

The query refiner is designed to use the pre-selected OA
candidates and support features generated from SFG mod-
ule to refine the learnt queries that are randomly initial-
ized. Ideally these pre-generated contextual signals should
be able to guide the queries to be learnt to attend to more rel-
evant candidates and reduce noisy predictions. To achieve
this we cross-attend the learnt queries with support features.

Specifically, as shown in Fig. 2, the query refiner is built
on standard transformer decoder structure. The randomly
initialized queries Q = {qi|qi ∈ Rd}Nq

i=1 first attend to
themselves via self-attention. Then these queries attend to
support features fsupp(x) generated from the SFG (Sec. 3.2)
through cross-attention. Here, the support features serve as
keys and values to the attention architecture. As a result,
queries have additional direction to look for correct object-
action in the encoded image features. In the final HOI de-
coder, queries attend to the encoded image features. The
output of the decoder are the context-aware queries which
contain rich cues to detect HOIs.
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3.4. Training details

To train this network, we apply the same loss func-
tion as [42] at the outputs of the interaction head, bo, bh,
PHOI and Pobj . The loss calculation is composed of two
stages: the bipartite matching stage between predictions and
ground truths, and the loss calculation stage for the matched
pairs. For the bipartite matching, we follow the training pro-
cedure of DETR [5] and use the Hungarian algorithm [28].
Then the loss is calculated on the basis of the matched pairs
as follows:

L = λ1Lbox + λ2Liou + λ3Lobj + λ4LHOI, (8)

where Lbox and Liou are l1 and GIoU loss applied to both
human and object bounding boxes, Lobj is a cross entropy
loss for object prediction, and LHOI is a binary cross entropy
loss for interaction prediction. λ1, λ2, λ3 and λ4 are hyper-
parameters selected following [42].

Additionally we use a binary cross entropy loss for the
s output, which corresponds to the image-level (object, ac-
tion) pair prediction. All these losses are trained in a multi-
task setting.

4. Experimental settings
Dataset & Metrics. We evaluate SSRT on the two most
popular benchmark datasets: V-COCO [16] and HICO-
DET [6]. V-COCO has 29 interaction classes. Follow-
ing [31], we evaluate the performance on 24 interaction
classes since 4 interaction classes have no object pair and 1
class has very few samples. This dataset has 2,533 training,
2,867 validation and 4,946 testing images. HICO-DET [6]
has 600 human-object interaction classes. It consists of
38,117 training and 9,658 test images.

We report mean average precision (mAP) on the test set
for both V-COCO and HICO-DET datasets. A prediction is
considered to be correct if the predicted human and object
bounding boxes overlap (with IoU greater than 0.5) with
the respective GT boxes and the predicted interaction class
is correct. We follow the protocol established in [43] to
evaluate results on the V-COCO dataset. For human actions
that do not interact with any object, two evaluation scenar-
ios are considered. Scenario 1 considers a strict evaluation
criteria that requires the prediction of a null bounding box
with coordinates [0, 0, 0, 0], Scenario 2 relaxes this condi-
tion for such cases by ignoring the predicted bounding box
for evaluation. We use the protocol from [6] to evaluate on
the HICO-DET. The mAP metric is computed in default set-
tings for three categories: Full (all 600 HOI classes), Rare
(138 classes that have less than 10 training samples), Non-
rare (462 classes that have more than 10 training samples).
Implementation Details. The architecture design is sim-
ilar to that of QPIC [42]. We use ResNet-50 and ResNet-
101 backbones [17]. The parameters of the network are ini-
tialized with DETR [5] trained on the COCO dataset [42].

Each of the encoder and decoder have 6 layers and 8 heads.
The dimension inside the transformer architecture is 256.
The total number of queries is 100. The initial learning rate
of the backbone network is 10−5, with others 10−3. The
weight decay is 10−4. The learning rate is dropped at ev-
ery 65 epochs and we train 150 epochs in total. We use the
AdamW [36] optimizer and the batch size is 16.

We experiment with the following semantic feature gen-
erator: (a) one-hot, (b) GLOVE [37], (c) CLIP [40]. In the
spatial feature generator, we use a 2× 64× 64 dimensional
binary spatial map [14, 43]. For the human bounding box
location, we select (16, 16) as the fixed top-left point, as
in the evaluating HOI datasets interacting human bounding
boxes are mostly confined at the top-left corner of the im-
ages [43]. Both spatial and semantic features are projected
to a 256-dimensional space.

5. Results

In this section, we first compare the performance of our
SSRT network with the SOTA methods in Sec. 5.1, fol-
lowed by an ablation study to validate the design choices in
Sec. 5.2. Finally, we show qualitative analysis in Sec. 5.3.

5.1. Comparison with SOTA

In Tables 1 and 2, we compare the performance of our
SSRT model to the SOTA methods on the V-COCO [16]
and HICO-DET [6] datasets respectively. We group the ap-
proaches into one-stage and two-stage. Following the lit-
erature, we report numbers of SSRT with both ResNet-50
(R-50) and ResNet-101 (R-101) backbones. Results show
that our SSRT has achieved SOTA performance on both
datasets with the ResNet-50 backbone, while ResNet-101
can improve the performance further. We outperform all
the DETR based solutions (HOI-Trans, ASNet, HOTR and
QPIC) on both datasets, and overall we achieve about 10%
improvement on V-COCO and 5% improvement on HICO-
DET comparing to the SOTA.

5.2. Ablation Studies

In this section, we do ablation for the different design
choices of SSRT. We evaluate on V-COCO dataset with the
ResNet-50 backbone. For each ablation, we change one pa-
rameter, and keep the other parameters at the best setting.

Support Feature Generator Module. In Table 3a, we
explore the benefits of using semantic and spatial features to
generate features for the query refiner block. Comparing to
the QPIC baseline (Row 1), using semantic features (Row
2) significantly improves the performance by +3.9 points.
This demonstrates the effectiveness of using the semantic
information to guide the HOI detection. On top of this, we
explore two different ways to aggregate the semantic and
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Type Method Scenario 1 Scenario 2
Tw

o
St

ag
e

VCL [19] 48.3 -
DRG [13] 51.0 -
Wang et al. [47] 52.3 -
FCL [21] 52.4 -
PD-Net [56] 52.6 -
ACP [27] 53.0 -
FCMNet [33] 53.1 -
SG2HOI [18] 53.3 -
IDN [30] 53.3 60.3
GTNet [22] 56.2 60.1
SABRA [24] 56.6 -

O
ne

St
ag

e

UnionDet [25] 47.5 56.2
Wang et al. [49] 51.0 -
HOI-Trans [58] 52.9 -
ASNet [7] 53.9 -
GGNet [57] 54.7 -
HOTR [26] 55.2 64.4
DIRV [12] 56.1 -
QPIC(R-50) [42] 58.8 61.0
QPIC(R-101) [42] 58.3 60.7
Ours (R-50) 63.7 65.9
Ours (R-101) 65.0 67.1

Table 1. Performance comparisons on the V-COCO [16] test
set. Best result is marked with bold and the second best result
is marked with underline.

Type Method Full Rare Non-rare

Tw
o

St
ag

e

Wang et al. [47] 17.57 16.85 17.78
FCMNet [33] 20.41 17.34 21.56
ACP [27] 20.59 15.92 21.98
PD-Net [56] 20.81 15.90 22.28
SG2HOI [18] 20.93 18.24 21.78
VCL [19] 23.63 17.21 25.55
DRG [13] 24.53 19.47 26.04
SABRA [24] 26.09 16.29 29.02
IDN [30] 26.29 22.61 27.39
GTNet [22] 26.78 21.02 28.50
ATL [20] 28.53 21.64 30.59
FCL [21] 29.12 23.67 30.75

O
ne

St
ag

e

UnionDet [25] 17.58 11.72 19.33
Wang et al. [49] 19.56 12.79 21.58
PPDM [32] 21.73 13.78 24.10
DIRV [12] 21.78 16.38 23.39
HOI-Trans [58] 23.46 16.91 25.41
PST [9] 23.93 14.98 26.60
HOTR [26] 25.10 17.34 27.42
ASNet [7] 28.87 24.25 30.25
GGNet [57] 29.17 22.13 30.84
QPIC(R-50) [42] 29.07 21.85 31.23
QPIC(R-101) [42] 29.90 23.92 31.69
Ours (R-50) 30.36 25.42 31.83
Ours (R-101) 31.34 24.31 33.32

Table 2. Performance comparisons on the HICO-DET [6] test
set. Best result is marked with bold and the second best result
is marked with underline.

spatial features: (1) concatenation (Row 3); and (2) ele-
mentwise multiplication (Row 4). Results show that ele-
mentwise multiplication gives the best performance, which
we believe is because that multiplication operates as a gat-
ing mechanism that effectively fuses semantic and spatial
information, as also observed in other work [38, 43].

Semantic Inputs. Table 3b explores different kinds of se-
mantic input that can be encoded as semantic features. For
this experiment, all varieties of semantic input are encoded
by the CLIP [40] text embedding model. We explore the
following types of semantic input: (a) action only: using
only predicted action category from the encoder. For exam-
ple, if the OA prediction is ⟨laptop, work⟩, we only use the
predicted action (i.e., “work” here) as the semantic input,
(b) object-action (OA): Using the previous example, the se-
mantic input here is ⟨laptop, work⟩ tuple, (c) semantic re-
trieval: In this approach we model the semantic input in a
non-parametric fashion. Using a joint visual-semantic em-
bedding network [40], we retrieve nearest OA semantic tu-
ples based on the visual features of the input. The retrieved
candidates are used as semantic input in this case. (d) V-
COCO captions: Since V-COCO is a subset of the COCO
dataset [8], we use the corresponding captions as additional
input along with the image. In the last row of the table,
we also experiment with the oracle setting, where we as-
sume we have access to the ground truth (GT) OA tuple.
The strong performance of the oracle model indicates that
refining the queries in this manner is an effective direction
to guide the network to focus on more relevant candidates.
The best performing approach in the non-oracle setting uses
OA tuple. There is still a non-trivial gap between it and us-
ing the oracle, indicating that there is still room to improve
the HOI detection accuracy by further improving the quality
of the pre-generated OA tuple candidates.

It is interesting to note that using captions as additional
input along with the image does not improve performance.
This might be due to the fact that compared to the object-
action candidate, the image captions can be noisy and some-
times too generic for the task (e.g. this photo has a horse
etc.). Using only the action approach achieves a slightly
worse performance than using the OA tuple as expected, as
the former has no information about the object category.

Number of Predictions as Semantics. We then ablate the
different number of OA predictions candidate selected as
the semantic inputs in Table 3c. We test with using topK,
where K=1, 2, 4, 8 and 13 HOI predictions as semantics. We
stop at K=13 because the maximum number of HOI ground
truths for V-COCO in each image is 13. To better under-
stand the results, we not only list the final mAP metric, but
also add the precision and recall for the prediction in the
table. Results show that K=4 gives the best performance,
and the performance gradually decreases when moving to-
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mAP

Base (QPIC) 58.8
Base + Sem. 62.7
Base + Sem.+ Sp. (concat.) 62.9
Base + Sem.+ Sp. (multi.) 63.7

(a) Support Feature Genera-
tor Module.

mAP

action only 63.1
OA 63.7
semantic retrieval 62.7
V-COCO captions 62.6

Oracle HOI GT 76.1

(b) Semantic Inputs.

# Prec. Rec. mAP

1 85.3 23.4 62.9
2 75.1 41.2 63.3
4 62.5 68.6 63.7
8 37.1 81.5 63.4
13 25.1 89.6 62.8

(c) Numbers of HOI
predictions selected
as semantics. Prec.
is precision and Rec.
is recall.

mAP

One-hot vector 63.0
GLOVE embedding [37] 63.1
CLIP text embedding [40] 63.7

(d) Semantic embeddings.

mAP

Multi-variate parameter 62.3
Bi-variate parameter 62.0
Multi-variate spatial map 63.0
Bi-variate spatial map 63.7

(e) Spatial feature designs.

Table 3. Design choices on the semantic and spatial features.

wards either direction (K=1 and K=13). As expected, K=1
gives the highest precision for prediction and K=13 gives
the highest recall. But the optimal performance point (K=4)
is in the middle, indicating that the trade-off between pre-
cision and recall of the prediction is important. Low recall
corresponds to using lesser information for the query re-
finer block to produce representative enough queries for the
decoder. Low precision affects the quality of input to the
refiner block with increasing noise.

Semantic Embeddings. We then evaluate different em-
bedding methods in Table 3d. We test with (1) a one-
hot vector from the prediction; (2) the GLOVE [37] en-
coder, and (3) the CLIP [40] text encoder. Results show
that all embeddings achieve good performance, while CLIP
achieves the best. This may due to the fact that CLIP en-
coder is learnt from large-scale image text-pairs and hence
generates a stronger semantic embedding for the HOI task
than others. One-hot results also give good performance,
indicating that using the pre-selected OA candidates itself
can still provide guidance to refine the queries.

Spatial Feature Designs. We evaluate the performance of
different spatial feature designs in Table 3e. For the rel-
ative spatial configuration (RSC) introduced in Sec. 3.2,
we consider (∆xoh,∆yoh,∆woh,∆hoh) to either follow
a multi-variate distribution or follow two bi-variate dis-
tributions for (∆xoh,∆yoh) and (∆woh,∆hoh). With

Figure 4. Qualitative results of SSRT compared to QPIC. For each
image, the detection outputs of SSRT are marked in green while
the outputs of QPIC are marked in red. The prediction scores are
presented in the captions. If no matched bounding box pairs are
detected then the score is marked as none. We observe that SSRT
improves over QPIC in mainly two aspects: (1) increasing the con-
fidence scores of the interaction predictions (sample 1-3); and (2)
successfully detecting the person, object and interactions that are
completely missed in QPIC (sample 4-6).

each distribution, we explore two types of features: (1)
only using parameters of distributions as features (Row
1 and 2). Specifically, for multi-variate distribution we
use mean, variance and co-variance among all combi-
nations of ∆xoh,∆yoh,∆woh,∆hoh as the feature, and
for bi-variate distribution we use the mean and variance
of all ∆xoh,∆yoh,∆woh,∆hoh, plus only co-variance of
(∆xoh,∆yoh) and of (∆woh,∆hoh) as the feature. We
concatenate them with semantic features as multiplication
is not an option here; (2) we generate random samples from
the distribution and then create the spatial map (Row 3 and
4) as introduced in Sec. 3.2. From Table 3e we can see
that using spatial map always outperforms directly using pa-
rameters as features, which we believe is due to that spatial
maps have a much higher dimension (2 x 64 x 64) than di-
rect parameters (14 or 17) that can learn richer spatial con-
figurations. In addition, the bi-variate distribution generated
spatial map outperforms the multi-variate one.

Increased number of parameters of QPIC. Our design
improves over QPIC by adding two novel modules (SFG
and QR). To validate that SSRT’s performance gain is from
its design, rather than from its additional model capacity,
we now experiment by increasing the number of parameter
in QPIC’s FFN to match those our approach (49.8M). In-
terestingly, QPIC’s performance drops from 58.8 mAP to
57.9 mAP when its parameters are increased from 41.1M
to 49.8M, likely due to overfitting. This clearly shows that
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(a) Hold a tennis racket. Scores: SSRT: 0.856 | QPIC: 0.001. (b) Eat a pizza. Scores: SSRT: 0.761 | QPIC: 0.512.

(c) Talk on the phone. Scores: SSRT: 0.612 | QPIC: none. (d) Cut with knife. Scores: SSRT: 0.757 | QPIC: none.

Figure 5. Visualization of the attention. We extract the attention map from the last layer of the decoder. In each sub-figure, from the left to
the right are (1) the original image with the ground truth; (2) the attention map of our SSRT, and (3) the attention map of QPIC.

SSRT performance (63.7 mAP) comes from our design.

Different ways of incorporating the information. Fi-
nally, we test three different ways of incorporating the se-
mantic/ spatial information: (i) between the backbone and
the encoder, (ii) as the input to the decoder, instead of us-
ing additional cross-attentions, (iii) to initialize the queries.
None of these successfully matched SSRT’s performance
and didn’t even improved over the performance of our QPIC
baseline. This shows the importance of using such informa-
tion properly. Upon analyzing these unsuccessful designs,
we found that they were sensitive to the accuracy of the
object-action (OA) selection and only when the ground truth
OAs were used, their performance was better than QPIC. In
contrast, SSRT is more robust to changes in OA selections,
likely because it only uses the information as support fea-
tures through additional cross-attention.

5.3. Qualitative Results

We show qualitative results of our SSRT and compare
it with the baseline (QPIC). Fig. 4 shows results of exam-
ples selected from different interaction classes. We find that
SSRT improves over QPIC mainly in two categories: (1)
increasing the confidence scores of the action predictions
(case 1-3); and (2) successfully detecting the person, object
and actions that are completely missed (no bounding box
output matches with GT) in QPIC (case 4-6). These im-
provement comes across different scenarios including: (1)
small or nearly invisible objects (Sample 1, 4, 5, 6); (2)
complex scenes (Sample 2); (3) multiple HOI predictions
(Sample 3 and 6).

To further understand the network behavior, we compare
the attention maps from SSRT and QPIC in Fig. 5. Specifi-
cally, we extract the visual attention maps of the query that
predicts the marked person and object bounding boxes from

the last layer of the decoder. In Fig. 5a, both QPIC and
SSRT can localize the person and the object, but QPIC fails
to predict the action with a high confidence while SSRT
does. Looking at the attention map we can see the attention
from QPIC is on the roughly correct region but very coarse
and noisy, while it from SSRT is much more refined and fo-
cused on the area of the interaction (the hand). Similarly in
Fig. 5b, SSRT achieves higher confidence than QPIC, as the
attention is more refined and focused on the interaction area
(the mouth and the hand), while QPIC just focuses on the
pizza. For images in Fig. 5c and Fig. 5d, QPIC completely
misses the prediction while SSRT detects the full correct
HOI. We see from the attention map that SSRT is able to at-
tend to the right area while QPIC fails. Overall we see that
SSRT has more refined and sharper attention, and is able to
focus on small objects in complex scenes.

6. Conclusion
We proposed SSRT, a one-stage semantic and spatial re-

fined transformer for detecting HOIs. SSRT generates se-
mantic and spatial features based on pre-selected human-
object prediction candidates and leverages them to not only
enrich the context but also guide the queries to attend to
more related predictions. SSRT achieved SOTA perfor-
mance on both V-COCO and HICO-DET datasets, demon-
strating the effectiveness of our solution.
Limitation. Our approach requires fully-supervised HOI
annotations for training, which are however extremely ex-
pensive to collect. In the future, it is important to explore
novel HOI solutions that can learn from limited annotations
and with less supervision.
Licenses. We use the following datasets: V-COCO (CC
BY 4.0 license), HICO-DET [1] and code packages:
QPIC [2], CLIP [3], GLOVE [4].
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